Visualization of complementary systems biology data with parallel heatmaps
نویسندگان
چکیده
The interpretation of large-scale biological data can be aided by the use of appropriate visualization tools. Heatmaps—patternrevealing aggregate views of data—have emerged as a preferred technique for the display of genomics data, since they provide an extra dimension of information in a two-dimensional display. However, an increasing focus on the integration of data from multiple sources has created a need for the display of additional dimensions. To improve the identification of relationships between co-expressed genes identified in microarray experiments, a parallel dataset heatmap viewer has been developed for four-dimensional data display. The flexible data entry structure of the parallel heatmap viewer facilitates the display of both continuous and discrete data. Specific examples are presented for the analysis of diverse functional genomics yeast data related to gene regulation, expression, and annotation. The parallel heatmap viewer enables knowledgeable life science researchers to observe patterns and properties within high-throughput genomics data in order to rapidly identify biologically logical relationships.
منابع مشابه
Integrative Systems Biology Visualization with MAYDAY
Visualization is pivotal for gaining insight in systems biology data. As the size and complexity of datasets and supplemental information increases, an efficient, integrated framework for general and specialized views is necessary. MAYDAY is an application for analysis and visualization of general 'omics' data. It follows a trifold approach for data visualization, consisting of flexible data pr...
متن کاملSPADEVizR: an R package for visualization, analysis and integration of SPADE results
Motivation Flow, hyperspectral and mass cytometry are experimental techniques measuring cell marker expressions at the single cell level. The recent increase of the number of markers simultaneously measurable has led to the development of new automatic gating algorithms. Especially, the SPADE algorithm has been proposed as a novel way to identify clusters of cells having similar phenotypes in h...
متن کاملshinyheatmap: Ultra fast low memory heatmap web interface for big data genomics
BACKGROUND Transcriptomics, metabolomics, metagenomics, and other various next-generation sequencing (-omics) fields are known for their production of large datasets, especially across single-cell sequencing studies. Visualizing such big data has posed technical challenges in biology, both in terms of available computational resources as well as programming acumen. Since heatmaps are used to de...
متن کاملBiCluster Viewer: A Visualization Tool for Analyzing Gene Expression Data
Exploring data sets by applying biclustering algorithms was first introduced in gene expression analysis. While the generated biclustered data grows with increasing rates due to the technological progress in measuring gene expression data, the visualization of the computed biclusters still remains an open issue. For efficiently analyzing the vast amount of gene expression data, we propose an al...
متن کاملSuperheat: An R package for creating beautiful and extendable heatmaps for visualizing complex data
The technological advancements of the modern era have enabled the collection of huge amounts of data in science and beyond. Extracting useful information from such massive datasets is an ongoing challenge as traditional data visualization tools typically do not scale well in high-dimensional settings. An existing visualization technique that is particularly well suited to visualizing large data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IBM Journal of Research and Development
دوره 50 شماره
صفحات -
تاریخ انتشار 2006